SEISMIC RETROFITS FOR SQUARE
REINFORCED CONCRETE COLUMNS
USING TITANIUM ALLOY BARS

Final Report

PROJECT SPR-784

ﬁi[ﬁ
RESEIRGH






SEISMIC RETROFITS FOR SQUARE REINFORCED
CONCRETE COLUMNS USING TITANIUM ALLOY BARS

Final Report

PROJECT SPR-784

by

Christopher Higgins, Ph.D., Andre Barbosa, Ph.D.
Sharoo Shrestha, Mackenzie Lostra, and Andre Belejo

School of Civil and Construction Engineering
Oregon State University

for

Oregon Department of Transportation
Research Section
555 13" Street NE, Suite 1
Salem OR 97301

and
Federal Highway Administration

1200 New Jersey Avenue SE
Washington, DC 20590

May 2020






1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
FHWA-OR-RD-20-05

4. Title and Subtitle 5. Report Date
Seismic Retrofits of Reinforced Concrete Columns Using Titanium May 2020
Alloy Bars

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report
Christopher Higgins, Ph.D., https://orcid.org/0000-0002-2853- No.
3648

Andre Barbosa, Ph.D. - https://orcid.org/0000-0003-4547-531X
Sharoo Shrestha,
Mackenzie Lostra,

Andre Belejo
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
Oregon State University 11. Contract or Grant No.

School of Civil and Construction Engineering
101 Kearney Hall
Corvallis, Oregon 97331

12. Sponsoring Agency Name and Address 13. Type of Report and Period
Covered

Oregon Dept. of Transportation Final Report 2015-2018

Research Section Federal Highway Admin. - 1
555 13" Street NE, Suite 1 1200 New Jersey Avenue SE 14. Sponsoring Agency Code
Salem, OR 97301 Washington, DC 20590

15. Supplementary Notes

16. Abstract
To explore their potential for seismic retrofitting of seismically deficient RC columns using titanium alloy
bars (T1ABs), experimental tests were undertaken in the laboratory using full-scale specimens. The
specimens were designed to have vintage details and proportions that are widely recognized as being
seismically deficient. Some specimens were retrofitted with TiABs to increase the confinement and
provide alternate load paths for flexural resistance. Soil-structure interactions were considered for spread
footing and timber pile supported footing. Specimens were subjected to reversed cyclic lateral loading and
the results of these experiments are reported. Analytical methods were used to predict the individual
specimen response and to conduct nonlinear time-history response analyses of bridge models with and
without TiAB retrofits. The results and studies indicate that TiAB retrofits do effectively improve the
seismic performance of poorly detailed RC columns. This information can be used to develop design
recommendations.

17. Key Words 18. Distribution Statement
Seismic, Reinforced Concrete, Columns, Titanium Copies available from NTIS and online at
Alloy, Retrofit, Tests http://www.oregon.gov//ODOT/TD/TP_RES/
19. Security Classification (of | 20. Security Classification | 21. No. of Pages 22. Price
this report) (of this page) 279
Unclassified Unclassified

Technical Report Form DOT F 1700.7 (8-72) Reproduction of completed page authorized



https://orcid.org/0000-0002-2853-3648
https://orcid.org/0000-0002-2853-3648
https://orcid.org/0000-0003-4547-531X

11



m

‘ SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

APPROXIMATE CONVERSIONS FROM SI UNITS

Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol
LENGTH LENGTH
in inches 254 millimeters mm mm millimeters 0.039 inches in
ft feet 0.305 meters m m meters 3.28 feet ft
yd yards 0.914 meters m m meters 1.09 yards yd
mi miles 1.61 kilometers km km kilometers 0.621 miles mi
AREA AREA
in? square inches 645.2 millimeters squared mm? mm? millimeters squared 0.0016 square inches in?
ft2 square feet 0.093 meters squared m? m? meters squared 10.764 square feet ft2
yd? square yards 0.836 meters squared m? ha hectares 2.47 acres ac
ac acres 0.405 hectares ha km? kilometers squared 0.386 square miles mi?
mi? square miles 2.59 kilometers squared ~ km? VOLUME
VOLUME mL milliliters 0.034 fluid ounces fl oz

floz fluid ounces 29.57 milliliters mL L liters 0.264 gallons gal
gal gallons 3.785 liters L m? meters cubed 35.315 cubic feet ft3
ft3 cubic feet 0.028 meters cubed m? m? meters cubed 1.308 cubic yards yd?
yd? cubic yards 0.765 meters cubed m? MASS

NOTE: Volumes greater than 1000 L shall be shown in m>. g grams 0.035 ounces oz

MASS kg kilograms 2.205 pounds b
0z ounces 28.35 grams g Mg megagrams 1.102 short tons (2000 1b) T
b pounds 0.454 kilograms kg TEMPERATURE (exact)
T short tons (2000 Ib) 0.907 megagrams Mg °C Celsius temperature 1.8+32 Fahrenheit °F
TEMPERATURE (exact)
°F Fahrenheit 5(F-32)/9 Celsius temperature  °C
temperature

* Sl is the symbol for the International System of Measurement

(4-7-94 jbp)
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1 INTRODUCTION

Large numbers of reinforced concrete (RC) bridges were built in the past that are now
recognized as seismically deficient. Two of the most common causes of seismic deficiencies in
older RC columns are inadequate transverse reinforcing steel and poorly detailed lap lengths at
the footing to column joint location. Seismic hazards are a threat to the resiliency of these bridge
lifelines; however, complete replacement of seismically deficient bridges is not practical due to
limited resources. Alternatively, rehabilitation and renewal of aging and deficient infrastructure
is a most feasible approach. Many alternative materials and techniques are available to retrofit
deficient RC columns and each has advantages and disadvantages. A new material for civil
infrastructure that offers unique potential for seismic retrofitting is titanium alloy bars (TiABs).
However, no experimental data are available to support the implementation of the material for
such seismic strengthening applications. To explore their potential for seismic retrofitting of
seismically deficient RC columns, experimental tests were undertaken in the laboratory using
full-scale specimens. The specimens were designed to have vintage details and proportions that
are widely recognized as being seismically deficient. Some specimens were retrofitted with
TiABs to increase the confinement and provide alternate load paths for flexural resistance. Soil-
structure interactions were considered for spread footing and timber pile supported footing.
Specimens were subjected to reversed cyclic lateral loading and the results of these experiments
are reported. Analytical methods were used to predict the individual specimen response and to
conduct nonlinear time-history response analyses of bridge models with and without TiAB
retrofits. The results and studies can be used to develop design recommendations.

1.1 MOTIVATION AND BACKGROUND

The Cascadia Subduction Zone (Cascadia fault) is a megathrust fault located off the Western
United States coastline, where the Juan de Fuca Plate has been gradually sliding beneath the
North America Plate. The fault spans nearly 620 miles (998 km) along the Pacific Ocean, with
the northern end beginning at Vancouver Island, Canada and stretching to the south near Cape
Mendocino in Northern California. The full earthquake potential of the Cascadia Subduction
Zone was only fully recognized at the end of the last century. Now, paleoseismic research has
estimated that the Pacific Northwest region of the United States has a 15 percent probability of
experiencing an event exceeding M9.0 in the next 50 years (Goldfinger et al. 2012). Prior bridge
design codes did not recognize the seismic hazard and as a result, many older existing bridges in
the region are not adequately designed for the current level of expected seismic hazard.

Based upon review of the Oregon Department of Transportation bridge database, it was observed
that many bridges built in the 1950s, 1960s, and 1970s contained reinforced concrete columns
with flexural and shear reinforcing steel inadequate to resist expected seismic demands. In
particular, these columns contain widely spaced and low strength ties with small hooks that
provide low confinement of the concrete, inadequate support of the flexural steel, and have short
lap splices without supplemental confinement that are located above the footing in the plastic
hinge region of the column. Along Interstate-5 in Oregon, 69 bridges were identified that were
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built prior to 1970 and contained rectangular reinforced concrete columns. The columns most
commonly consisted of #11 Intermediate Grade (Grade 40) reinforcing steel, lap splice lengths
above the footing averaged 30db, and #3 Intermediate Grade reinforcing steel ties spaced at 12 in
(305 mm) on-center.

Poorly detailed lap splice lengths and inadequate transverse reinforcing steel are the primary
sources for insufficient ductility and poor performance of vintage columns subjected to cyclic
loads (Cairns and Arthur, 1979; ElGawady, Endeshaw, McLean, & Sack, 2010; Girard and
Bastien, 2002; Lukose, Gergely, & White, 1982; Melek and Wallace, 2004; Paulay, 1982).
Although the plastic hinge zone of columns coincides with the column ends where the lap splices
were placed, designers placed the splices at this location for ease of construction. It is now
recognized that the lap lengths are insufficient to fully develop the column reinforcing steel
before the lap splice bond strength is exceeded and this creates a bond-slip failure mode (or lap
splice failure) in which the starter bars anchored in the footing and the column bars slide relative
to each other, reducing the stiffness, displacement capacity, ductility, and strength of the
columns when subjected to cyclic lateral loading. Secondly, inadequate transverse reinforcing
steel permits buckling of the longitudinal reinforcing steel bars between tie locations and
insufficient concrete confinement, resulting in loss of compressive axial load capacity and non-
ductile plastic hinge behavior. Widely spaced transverse ties in rectangular reinforced concrete
columns make them a particular concern because of their naturally low confining capabilities
compared to circular columns.

Removal and replacement of these types of bridges would be the most effective solution,
however, the large numbers of structures needing replacement is simply too high and resources
are too limited. Not only are these bridges now being used beyond their originally intended
design life, but they are being required to resist a hazard for which they were not designed.
These considerations lead to rehabilitation as the most practical solution. The objective of any
retrofit approach is to provide the desired level of seismic performance in the most economical
way. This research presents full-scale laboratory test results on the performance of seismically
deficient square reinforced concrete columns retrofitted with externally mounted TiABs.

TiABs have well-defined material properties including high strength, low stiffness, and
negligible inelastic strain hardening compared to conventional reinforcing steel. They are
lightweight (which make them easy to work with in construction), fully impervious to
conventional sources of corrosion (long-term exposure to the environment is not a concern), and
have a coefficient of thermal expansion that is closer to concrete than reinforcing steel. The high
cost of TiABs is a concern, however small diameter bars can be used because of the high
strength and durability and simplified details allow for economical installation. The construction
details reported here allow for visual inspection of the materials within the retrofit for condition
assessment after a seismic event.

The proposed seismic retrofit using TiABs consisted of two parts and aimed to compensate for
the common inadequate flexural and transverse reinforcing steel details that are observed in
vintage RC columns. Vertical TiABs were embedded into epoxy-filled drilled holes in the
footings and columns to provide an alternative flexural tension load path and self-centering or
restoring mechanism to the column. A spiral TiAB reinforced concrete shell was added to
provide confinement to the column core and bracing of the vertical TiABs that were unbonded
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along their length. The spiral TiAB reinforced shell was formed without concrete cover. The
combined effects were intended to improve ductility and deformation capacity while controlling
column flexural strength to preclude other undesirable failure modes. These features can
produce more resilient bridges and offer designers an alternative seismic retrofitting method to
economically achieve seismic performance objectives in vintage substructures.

1.2 RESEARCH SIGNIFICANCE

Presently available retrofitting techniques all have some drawbacks that provide incentive to
develop economical alternatives. The well-defined material properties of TiABs are
advantageous for retrofitting RC columns with seismic deficiencies, but there are no
experimental data on the use of TiABs for seismic retrofitting of RC columns. The goal of this
research was to provide experimental data and analytical tools to evaluate the effectiveness of
externally mounted TiABs for rehabilitating bridge columns to enhance seismic performance of
existing bridges. This research reports on the experimental testing of fourteen (14) square RC
columns constructed and retrofitted in a manner so as to simulate the application of TIAB
retrofits on vintage bridges that are seismically deficient. The performances of the TiAB
retrofitted specimens are compared to reference RC columns. All of the columns consisted of
the same cross sectional dimensions and were detailed according to mid-20" century design
standards that included short lap splices and widely spaced transverse steel. Two column heights
were considered and three different footing connections were investigated to consider soil-
structure influences on the performance of the retrofits. The results help develop design
recommendations for seismic retrofitting of deficient reinforced concrete columns.

Analytical models of RC columns retrofitted with TiABs were developed based on a
phenomenological modeling approach of the measured experimental response. The individual
column model was validated using the experimental results and was adapted in a bridge bent
system to study the system behavior in regular and irregular bridges. Column bases were fixed
to simulate rigid foundations. The retrofit was applied uniformly to all columns in a bridge
system regardless of their height and the performance was compared with that of a similar bridge
model with non-retrofitted columns. The results of this study demonstrate the improvements to
seismic performance for retrofitted bridges with poorly detailed RC columns in bridge
substructures.






2.0 LITERATURE REVIEW

This chapter presents a review of relevant literature where the main research topics are
addressed. The main topics under this work are: (1) Lap splice behavior, (2) Confinement and
ductility, (3) Effect of axial load and lateral load direction on lateral load capacity, (4)
Alternative retrofit strategies, (5) Titanium applications in civil engineering, (6) Soil-foundation
interaction, (7) Analytical modeling, and (8) Retrofit design approach.

2.1 LAP SPLICE BEHAVIOR

In reinforced concrete (RC) bridges, the most critical region prone to bond failure include the
base of bridge piers or columns, especially for vintage RC bridge columns where the longitudinal
reinforcing steel is spliced with starter bars for ease of construction at the base of the column,
above the foundation. Presence of splices at the region of highest flexural demands in columns
(i.e. above the footing level) could be acceptable in case of buildings as long as the “strong
column-weak beam” design philosophy is adopted (Paulay, 1982). However, the base of bridge
piers or columns supporting the superstructure are deliberately designed to develop plastic hinges
during a major earthquake and bridge structures exhibit less redundancy than buildings. Several
studies have attributed poor performance of these bridge columns to short lap-splice lengths and
inadequate transverse reinforcing steel (Cairns & Arthur, 1979; Lukose, Gergely, & White, 1982;
Girard & Bastien, 2002; Melek & Wallace, 2004; ElGawady, Endeshaw, McLean, & Sack,
2010). Thus, researchers ( Lynn, Moehle, Mahin, & Holmes, 1996; Paulay, 1982; Chai,
Priestley, & Seible, 1994) argue that lap-splices in these regions should be avoided or at least be
properly detailed with proper confinement and adequate development length to ensure lateral
load capacity and ductility.

The performance of RC columns with lap-spliced bars depends largely on different factors
including splice length, longitudinal reinforcement ratio, bar size, yield strength of longitudinal
reinforcing steel, spacing between vertical bars, lateral confinement, and applied axial load
(Priestley, Seible, & Calvi, 1996). Other parameters contributing to the onset of concrete
splitting such as thickness of concrete cover, distance between spliced bars, strength of the
concrete, however, are believed to have minimal influence in a seismic environment (Paulay,
1982).

Lukose et al. (1982) studied the behavior of lap-splices under repeated monotonic and reversed
cyclic loading and assessed the effect of different parameters in their performance. They found
that the reversed cyclic loading is more detrimental to the performance of spliced bars due to the
increase in crossing concrete cracks and damage penetration as compared to monotonic loading.
They also noticed higher bond stress in tension lap-splices compared to compression lap-splices
followed by considerable relative bar-slip under tension compared to compression. Bar-slip in
compression was more pronounced once the cover concrete was lost due to longitudinal splitting
of the concrete over the spliced reinforcing bars. In either case, they emphasize the importance
of well distributed and adequate transverse reinforcing steel along the splice, and extension



beyond the high moment splice end to control bond deterioration thereby increasing strength and
ductility of the splice region.

Lap-splice lengths of 20 to 30 times the diameter of bar (dp) were popularly adopted in vintage
bridge columns as compression lap-splices and are characteristic of columns with large diameter
reinforcing bars (Lukose et al., 1982). These lap-splices have been shown to be inadequate to
transfer the full tensile force of the longitudinal reinforcing steel to the starter bars of the
foundation in both rectangular and circular columns and are found to be responsible for rapid
degradation of flexural strength (Chai et al., 1994; Xiao & Ma, 1997; Brefa & Schlick, 2007;
Harajli, 2008; Chai, Priestley, & Seible, 2008).

Valluvan, Kreger, and Jirsa (1993) tested twelve (12) 2/3 scale column specimens to examine
retrofitted-splice behavior. Their test specimens were scaled from the prototype reinforced
concrete column of 18 in x 18 in (457 mm x 457 mm) dimension with four #9 (#29M)
longitudinal bars and #3 (#10M) ties. Their actual specimens were 12 in x 12 in (305 mm x 305
mm), 6 ft. (1829 mm) tall with four #6 (#19M) longitudinal bars and #2 (#6M) ties at 12 in (305
mm) spacing and had splice of length 24 times longitudinal bar diameters located at mid-height.
One of the specimens was a control specimen, two were strengthened by welding the spliced bars
together with an additional tie near the end of the outer spliced bar on one of them, and the
remaining nine specimens were retrofitted by confining the splice region. Confinement was
provided by three different mechanisms: (1) steel angles and straps along the splice region, (2)
external steel reinforcing bars ties, and (3) additional internal ties in the splice region. Different
grouting conditions were also explored when using supplemental confinement. They found that
welding the splice bars provided continuity in the load path and caused yielding during cyclic
loading when additional ties were provided internally around the outer spliced bars. They also
concluded that external confinement of the splice region was effective in increasing the splice
strength when steel elements and ties were added along with the grout. They, however, found
that adding internal ties by removing cover concrete was even more detrimental to the splice
strength as it created micro-cracking in the core concrete. This research supports the
contribution of confinement in increasing splice strength when done properly without any
intrusion to the existing column. Although welding the splice bars created continuity in the load
path, if not controlled, welding can severely change the chemical properties of the reinforcing
bars and cause brittle failures. In addition, chipping through the cover concrete is not preferred
as it can cause micro-cracking in the core concrete and create stress concentrations.

Melek and Wallace (2004) tested six (6) full-scale reinforced concrete cantilevered columns with
deficient lap-splices (20dp) under axial and reversed cyclic loading. They studied the behavior of
the columns with insufficient lap-splices under different axial loads, shear demands and loading
history. The specimens tested were of similar proportions as those tested by Lynn et al. (1996)
who studied the behavior of columns with lap-splices and continuous longitudinal reinforcing
steel bars. Comparing both test results revealed that inadequate lap-splice lengths caused lateral
strength degradation. They observed that the rotation caused by the slippage of the longitudinal
bars accounted for a major portion of the total rotation especially after the bond deterioration.
They emphasized the importance of characterizing the column rigid body rotation due to slip
over the splice length which can help to calibrate moment versus slip-rotation springs in
modeling splice behavior. They also observed that ACI 318-02 (ACI Committee 318, 2004)
underestimated the bond stresses in the lap-spliced bars, which could lead to column shear
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failures. They found that the magnitude of axial load maintained during testing and the shear
strength ratios had negligible impact on normalized moment versus lateral drift behavior.
However, peak lateral load capacity was higher with higher axial load and the rate of lateral
strength degradation increased slightly with increasing shear level.

Harries, Ricles, Pessiki, and Sause (2006) investigated the use of carbon-fiber-reinforced
polymer (CFRP) composite jackets to retrofit non-ductile square reinforced concrete columns
with inadequately detailed lap-splices. They were successful in increasing the lap-splice
capacity of those columns to develop the nominal flexural capacity of columns with continuous
longitudinal reinforcing steel bars. They noticed that the external confinement using CFRP
jackets could delay the beginning of significant slip by limiting the transverse strains and thus
the splitting of concrete along the splice. However, the ductility capacity was limited by the
eventual occurrence of significant slip after which the confinement has negligible effect on the
residual splice capacity. These results suggest the necessity of alternate load path or alternate
measure (in addition to confinement) to control the slip in spliced bars once there is significant
slip in the lap-spliced bars, and the inefficiency of using reinforcing plating for confinement on
square and rectangular columns. The studies reviewed above emphasize the importance of
proper detailing of the lap-spliced bars in potential plastic hinge regions including proper
confinement and provision of alternate load path after splice failure. The retrofit developed and
presented subsequently in this report offers an alternate load path through external ligaments to
bridge the poor reinforcing steel bar lap-splice. In addition, the retrofit developed provides
circular confinement to square columns thereby providing near uniform confining pressure
throughout the section.

2.2  CONFINEMENT AND DUCTILITY

The available ductility in RC columns is directly related to the longitudinal and transverse
reinforcing steel details especially in the critical plastic hinge regions (Daudey & Filiatrault,
2000). Inadequate confinement of RC columns tends to limit the ultimate curvature
corresponding to the compressive strain in the range of 0.005 and may lead to bond failure
between reinforcing steel bars and concrete in a brittle splitting mode, resulting in the relatively
low ductility capacity of these members (Chai et al., 1994; Harajli, 2009). Under inelastic cyclic
loading, as in the case of a strong seismic shaking, degradation of concrete results in the decrease
of shear capacity in the plastic hinge region. RC columns, thus, need to be detailed for sufficient
ductility through effective confinement of these critical regions to sustain the likely inelastic
displacements without significant degradation of strength.

Ozcebe and Saatcioglu (1987) tested four (4) full-scale square reinforced concrete columns under
constant axial load and reversed cyclic loading to study the behavior of columns with different
confinement configuration. The specimens were identical in terms of column cross-section (350
mm x 350 mm square) and longitudinal reinforcing steel detailing with 8-#8 (#25M) diameter
reinforcing bars uniformly distributed. The first and second specimens were confined with
square hoops with 135" hooks with the second one having hoops spaced at two-third the spacing
of the first one. The third and fourth specimens had additional cross-ties spaced at the spacing as
that of the first specimen. The cross-ties in the third specimen had 135° hooks whereas the
fourth had 135° and 90° hooks. The performance of the columns with cross-ties were superior to
the ones with only square ties. Although the specimen with closely spaced square ties performed

7



better than the one with wide spacing, the performance enhancement was not as significant as the
ones with the cross-ties. Hence, the authors suggested that the proper selection of confinement
configuration is more efficient in improving confinement than increasing the transverse
reinforcement ratio, which fails to engage the unsupported longitudinal reinforcing steel bars.
They also compared the performance with the analytical prediction using the “Kent and Park
model” (Kent & Park, 1971) and the “Sheikh and Uzumeri model” (Sheikh & Uzumeri, 1982).
Results indicated that the analytical prediction underestimated column performance when the
unconfined concrete model was used and reinforcing steel strain hardening was not considered in
the modeling.

Saatcioglu and Ozcebe (1989) tested fourteen (14) full-scale square RC column specimens to
study the effect of confinement by transverse reinforcing steel on their response. The specimens
tested had the same layout of transverse reinforcing steel at varying spacing. The one with 2 in
(51 mm) spacing most effectively enhanced the column behavior by confining the core than the
ones with more than 2 in (51 mm) spacing. Analyses of these results in combination with the
ones from the specimens with different transverse reinforcing steel configuration indicated that a
proper choice of transverse steel arrangement could be more feasible than reducing the tie
spacing to achieve the same level of confinement. The increase in shear capacity associated with
increased transverse steel, over and above the shear capacity corresponding to the peak shear
force, is believed to have little effect on improved response.

Mander, Priestley, and Park (1988) developed a theoretical stress-strain model for concrete
confined by different arrangement of transverse reinforcing steel bars. The stress-strain model
was validated through the correlation with experimental tests of 31 nearly full-scale column
specimens. They developed a single equation for confined compressive strength for tied and
continuously confined sections with different values of effective confinement coefficient, 4,
based on the type of transverse reinforcing steel bars used. Typical values of k. were 0.95 for
sections confined by spirals, 0.75 for sections with ties, and as low as 0.6 for tied sections with
large aspect ratios; circular hoops lay somewhere in between. The high confinement coefficient
for continuously confined or circular geometries reflects the greater efficiency of circular
transverse reinforcement to achieve confinement in concrete columns compared to rectangular
ties. The equation proposed directly relates compression strength of the confined concrete to the
effective lateral confining stress, f;- (a function of k.), that could be developed at yield of the
transverse reinforcing steel. The theoretical expression for lateral confining pressure, f;, shows
that it is inversely proportional to the longitudinal spacing of the ties or spiral.

Watson, Zahn, and Park (1994) developed design charts using previously derived stress-strain
relationships for confined concrete. These design charts allow for the determination of the
quantity of transverse reinforcing steel required for specified curvature-ductility factors in the
potential plastic-hinge regions of reinforced concrete columns.

Razvi and Shaikh (2018) tested nine (9) 1/3 scale square reinforced concrete columns to study
the confinement contribution of ferro-mesh jacketing. Their test specimens consisted of three
groups: (1) three specimens with stirrups as confinement, (2) three specimens with stirrups as
well as ferro-mesh jacketing for confinement, and (3) three specimens having only ferro-mesh
jacketing for confinement. All the specimens were subjected to concentric compressive load and
their behavior in terms of axial load c